Get MSD (mean square displacement) from MD trajectory (**Python**) =========== The first script convert XDATCAR to XYZ file The second script extract MSD info from XYZ file Final result is in the file msd.out. The format is: msd_of_element1,msd1_x,msd1_y,msd1_z,msd_of_element2,msd2_x,msd2_y,msd2_z,... :: # License (MIT) # # Copyright (c) 2014 Muratahan Aykol # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE import numpy as np xdatcar = open('XDATCAR', 'r') xyz = open('XDATCAR.xyz', 'w') xyz_fract = open('XDATCAR_fract.xyz', 'w') system = xdatcar.readline() scale = float(xdatcar.readline().rstrip('\n')) print(scale) #get lattice vectors a1 = np.array([ float(s)*scale for s in xdatcar.readline().rstrip('\n').split() ]) a2 = np.array([ float(s)*scale for s in xdatcar.readline().rstrip('\n').split() ]) a3 = np.array([ float(s)*scale for s in xdatcar.readline().rstrip('\n').split() ]) print(a1) print(a2) print(a3) #Save scaled lattice vectors lat_rec = open('lattice.vectors', 'w') lat_rec.write(str(a1[0])+' '+str(a1[1])+' '+str(a1[2])+'\n') lat_rec.write(str(a2[0])+' '+str(a2[1])+' '+str(a2[2])+'\n') lat_rec.write(str(a3[0])+' '+str(a3[1])+' '+str(a3[2])) lat_rec.close() #Read xdatcar element_names = xdatcar.readline().rstrip('\n').split() element_dict = {} element_numbers = xdatcar.readline().rstrip('\n').split() i = 0 N = 0 for t in range(len(element_names)): element_dict[element_names[t]] = int(element_numbers[i]) N += int(element_numbers[i]) i += 1 print(element_dict) while True: line = xdatcar.readline() if len(line) == 0: break xyz.write(str(N) + "\ncomment\n") xyz_fract.write(str(N)+"\ncomment\n") for el in element_names: for i in range(element_dict[el]): p = xdatcar.readline().rstrip('\n').split() coords = np.array([ float(s) for s in p ]) # print coords cartesian_coords = coords[0]*a1+coords[1]*a2+coords[2]*a3 xyz.write(el+ " " + str(cartesian_coords[0])+ " " + str(cartesian_coords[1]) + " " + str(cartesian_coords[2]) +"\n") xyz_fract.write(el+ " " + str(coords[0])+ " " + str(coords[1]) + " " + str(coords[2]) +"\n") xdatcar.close() xyz.close() xyz_fract.close() :: # The MIT License (MIT) # # Copyright (c) 2014 Muratahan Aykol # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE import numpy as np from copy import deepcopy # This function reads an XYZ file and a list of lattice vectors L = [x,y,z] and gives MSD + unwrapped coordinates def MSD(xyz_file,L): a = []; l = []; a.append(L[0]); a.append(L[1]); a.append(L[2]); #basis vectors in cartesian coords l.append(np.sqrt(np.dot(a[0],a[0]))); l.append(np.sqrt(np.dot(a[1],a[1]))); l.append(np.sqrt(np.dot(a[2],a[2]))); #basis vector lengths file = open(xyz_file, 'r') recorder = open("msd.out", 'w') coord_rec = open("unwrapped.xyz", 'w') origin_list = [] # Stores the origin as [element,[coords]] prev_list = [] # Stores the wrapped previous step unwrapped_list = [] # Stores the instantenous unwrapped msd = [] #Stores atom-wise MSD Stores msd as [msd] msd_dict ={} #Stores element-wise MSD msd_lattice = [] msd_dict_lattice ={} element_list = [] # element list element_dict = {} # number of elements stored content = file.readline() N = int(content) for i in range(N): msd.append(np.float64('0.0')) msd_lattice.append([0.0, 0.0, 0.0 ]) file.readline() step = 0 while True: step += 1 # Get and store the origin coordinates in origin_dict at first step if step == 1: for i in range(N): t = file.readline().rstrip('\n').split() element = t[0] if element not in element_list: element_list.append(element) if element not in element_dict: element_dict[element] = 1.0 else: element_dict[element] += 1.0 coords = np.array( [ float(s) for s in t[1:] ] ) origin_list.append([element,coords]) # Copy the first set of coordinates as prev_dict and unwrapped unwrapped_list = deepcopy(origin_list) prev_list = deepcopy(origin_list) recorder.write("step ") for element in element_list: recorder.write(element+" ") recorder.write("\n") # Read wrapped coordinates into wrapped_dict content = file.readline() if len(content) == 0: print("\n---End of file---\n") break N = int(content) file.readline() wrapped_list = [] # Erease the previous set of coordinates for i in range(N): t = file.readline().rstrip('\n').split() element = t[0] coords = np.array( [ float(s) for s in t[1:] ] ) wrapped_list.append([element,coords]) coord_rec.write(str(N)+ "\ncomment\n") # Unwrap coodinates and get MSD for atom in range(N): msd[atom] = 0.0 coord_rec.write(wrapped_list[atom][0]) # decompose wrapped atom coordinates to onto lattice vectors: w1 = wrapped_list[atom][1][0] w2 = wrapped_list[atom][1][1] w3 = wrapped_list[atom][1][2] # decompose prev atom coordinates to onto lattice vectors: p1 = prev_list[atom][1][0] p2 = prev_list[atom][1][1] p3 = prev_list[atom][1][2] #get distance between periodic images and use the smallest one if np.fabs(w1 - p1) > 0.5: u1 = w1 - p1 - np.sign(w1 - p1) else: u1 = w1 - p1 if np.fabs(w2 - p2) > 0.5: u2 = w2 - p2 - np.sign(w2 - p2) else: u2 = w2 - p2 if np.fabs(w3 - p3) > 0.5: u3 = w3 - p3 - np.sign(w3 - p3) else: u3 = w3 - p3 #add unwrapped displacements to unwrapped coords unwrapped_list[atom][1][0] += u1 unwrapped_list[atom][1][1] += u2 unwrapped_list[atom][1][2] += u3 uw = unwrapped_list[atom][1][0]*a[0] + unwrapped_list[atom][1][1]*a[1] +unwrapped_list[atom][1][2]*a[2] ol = origin_list[atom][1][0]*a[0] + origin_list[atom][1][1]*a[1] + origin_list[atom][1][2]*a[2] msd[atom] = np.linalg.norm(uw-ol)**2 msd_lattice[atom] = [np.linalg.norm(uw[0]-ol[0])**2,np.linalg.norm(uw[1]-ol[1])**2,np.linalg.norm(uw[2]-ol[2])**2] coord_rec.write(" " + np.array_str(uw).replace("[","").replace("]","")) coord_rec.write("\n") prev_list = [] # Store current wrapped coordinates for the next step prev_list = deepcopy(wrapped_list) # record msd recorder.write(str(step) + " ") for el in element_list: msd_dict[el] = 0.0 msd_dict_lattice[el]=[0.,0.,0.] for atom in range(len(msd)): msd_dict[wrapped_list[atom][0]] += msd[atom]/element_dict[wrapped_list[atom][0]] for i in range(3): msd_dict_lattice[wrapped_list[atom][0]][i] += msd_lattice[atom][i]/element_dict[wrapped_list[atom][0]] for el in element_list: recorder.write(str(msd_dict[el])+ " " + str(msd_dict_lattice[el][0])+ " " + str(msd_dict_lattice[el][1])+ " " + str(msd_dict_lattice[el][2])+ " ") recorder.write("\n") if step % 10 == 0: print(step) recorder.close() file.close() coord_rec.close() def read_lat_vec(): lat_file = open('lattice.vectors','r') line = [] for i in range(3): line.append([float(x) for x in lat_file.readline().rstrip('\n').split()]) print(line[i]) lattice = np.array([line[0],line[1],line[2]]) return lattice #You can read the lattice vectors from lattice.vector file lattice = read_lat_vec() #Or define the lattice vector manually as in #lattice =np.array([[-12.181156,-4.306689,7.459404],[0.000000,-12.920067,7.459404],[0.000000,0.000000,14.918808]]) #Run the MSD calculator with XDATCAR_fract.xyz and the lattice vector defined above MSD("XDATCAR_fract.xyz",lattice)